Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

# A structural hierarchy in the hydrogen-bonded adduct $N, N^{\prime}$-dimethylpiperazine-tartaric acid-water (1/2/2): an $N$-component $N$-dimensional structure ( $N=3$ ) with substructures having $N=1$ and 2 

Dorcas M. M. Farrell, ${ }^{\text {a }}$ George Ferguson, ${ }^{\text {a }} \boldsymbol{\dagger}$ Alan J. Lough ${ }^{\text {b }}$ and Christopher Glidewell ${ }^{\text {a* }}$

${ }^{\text {a }}$ School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, Scotland, and ${ }^{\mathbf{b}}$ Lash Miller Chemical Laboratories, University of Toronto, Toronto, Ontario, Canada M5S 3H6
Correspondence e-mail: cg@st-andrews.ac.uk
Received 15 October 2001
Accepted 16 October 2001
Online 14 December 2001
In the hydrated adduct $N, N^{\prime}$-dimethylpiperazine-1,4-diium bis(3-carboxy-2,3-dihydroxypropanoate) dihydrate, [MeNH$\left.\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NHMe}\right]^{2+} .2\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}\right)^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad$ or $\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+}$.$2 \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, formed between racemic tartaric acid and $N, N^{\prime}$-dimethylpiperazine (triclinic $P \overline{1}, Z^{\prime}=0.5$ ), the cations lie across centres of inversion. The anions alone form chains, and anions and water molecules together form sheets; the sheets are linked by the cations to form a pillared-layer framework. The supramolecular architecture thus takes the form of a family of $N$-dimensional $N$-component structures having $N=$ 1,2 or 3 .

## Comment

We have recently investigated the salt-like adducts formed by functionalized aromatic carboxylic acids with organic diamines (Burchell, Ferguson et al., 2001; Burchell, Glidewell et al., 2001) and we have now turned our attention to the highly functionalized acyclic acid tartaric acid (2,3-dihydroxy-1,4butanedioic acid, $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{6}$ ). Racemic tartaric acid and $N, N^{\prime}-$ dimethylpiperazine, $\mathrm{MeN}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NMe}$, form a hydrated salt, i.e. $\left[\mathrm{MeNH}\left(\mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NHMe}\right]^{2+} .2\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}\right)^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, (I) (Fig. 1). This salt crystallizes in space group $P \overline{1}$ with $Z^{\prime}=0.5$. The cation adopts a chair conformation, with equatorial N -methyl groups, and lies across a centre of inversion, chosen for convenience as that at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$. All of the OH units in the anion act as donors in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1), and the water molecule acts as a double donor and as a single acceptor in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. The overall three-

[^0]component supramolecular structure is three-dimensional, in the form of a pillared-layer framework, and it is possible to identify a one-dimensional one-component substructure built from anions only, and a two-dimensional two-component substructure built from anions and water molecules. There is thus a family of N -dimensional N -component structures for $N=1$, 2 or 3, precisely as observed in the adduct ethane-1,2diphosphonic acid-4,4'-bipyridyl-water (1/1/2) (Glidewell et al., 2000).


The carboxyl O3 atom in the anion at $(x, y, z)$ acts as hydrogen-bond donor to the carboxylate O 1 atom in the anion at $(1+x, y, z)$, so generating, by translation, a $C(7)$ chain running parallel to the [100] direction. In the same anion at ( $x$, $y, z$ ), the hydroxyl O6 atom acts as donor to O1 in the anion at $(-x,-y, 1-z)$. Propagation of these two hydrogen bonds generates a chain of fused rings (Fig. 2), with $R_{2}^{2}(12)$ rings centred at $\left(n, 0, \frac{1}{2}\right)(n=$ zero or integer $)$ and $R_{4}^{2}(14)$ rings centred at $\left(n+\frac{1}{2}, 0, \frac{1}{2}\right)(n=$ zero or integer $)$.

The water O 7 atom at $(x, y, z)$ acts as hydrogen-bond donor, via H 71 and H 72 , respectively, to O 5 at $(x, y, z)$ and O 2 at $(1+x, y, z)$, so generating a third type of ring, of $R_{3}^{3}(12)$ type (Fig. 2). The hydroxyl O5 atom at $(x, y, z)$ is a component of the chain of fused rings along $\left(x, 0, \frac{1}{2}\right)$; this O5 atom acts as hydrogen-bond donor to the water O7 atom at ( $1-x, 1-y$, $2-z$ ), which is a component of the chain of fused rings along


Figure 1
The molecular components of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $30 \%$ probability level. The atom marked ' $a$ ' is at the symmetry position $(1-x, 1-y, 1-z)$.


Figure 2
Part of the crystal structure of (I) showing the [100] chains of fused rings, formed by the anions, linked into a $(01 \overline{1})$ sheet by the water molecules. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) or hash (\#) are at the symmetry positions $(1+x, y, z)$ and $(1-x, 1-y, 2-z)$, respectively.
( $x, 1, \frac{3}{2}$ ). Thus, this final $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond not only gives rise to a second chain of fused rings along the line $\left(x, \frac{1}{2}, 1\right)$ containing two further types of ring, viz. $R_{4}^{4}(14)$ rings centred at $\left(n, \frac{1}{2}, 1\right)(n=$ zero or integer $)$ and $R_{4}^{4}(8)$ rings centred at $\left(n+\frac{1}{2}, \frac{1}{2}, 1\right)(n=$ zero or integer $)$, but it also serves to link all the [100] chains of fused rings into ( $01 \overline{1}$ ) sheets (Fig. 2). Within these sheets, there are no fewer than five different ring motifs, four of which are centrosymmetric; only the $R_{3}^{3}(12)$ rings are non-centrosymmetric.

The ( $01 \overline{1}$ ) sheets are almost planar and are linked into a continuous framework by the cations. The two N atoms in the cation centred at $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ are at $(x, y, z)$ and $(1-x, 1-y$, $1-z$ ), and they act as hydrogen-bond donors to O 4 atoms at $(x, y, z)$ and $(1-x, 1-y, 1-z)$, respectively, which lie in adjacent sheets. In this manner, each sheet is linked to its two neighbouring sheets by cations arranged as pillars between the anion-water layers (Fig. 3).


Figure 3
Part of the crystal structure of (I) showing the linking of the ( $01 \overline{1}$ ) sheets by the cations. For the sake of clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position $(1-x, 1-y, 1-z)$.

## Experimental

Equimolar quantities of racemic tartaric acid and $N, N^{\prime}$-dimethylpiperazine were separately dissolved in methanol. The solutions were mixed and set aside to crystallize, producing analytically pure (I). Analysis: found C $37.4, \mathrm{H} 7.0, \mathrm{~N} 6.2 \% ; \mathrm{C}_{14} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{14}$ requires C 37.3, H 6.7, N $6.2 \%$. Crystals suitable for single-crystal X-ray diffraction were selected directly from the analytical sample.

## Crystal data

$\mathrm{C}_{6} \mathrm{H}_{16} \mathrm{~N}_{2}{ }^{2+} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{5} \mathrm{O}_{6}{ }^{-} \cdot 2 \mathrm{H}_{2} \mathrm{O} \quad Z=1$
$M_{r}=450.40$
Triclinic, $P \overline{1}$
$a=7.2907$ (3) Å
$b=8.3423$ (4) A
$c=8.4324$ (4) $\AA$
$\alpha=96.406(2)^{\circ}$
$\beta=106.359(2)^{\circ}$
$\gamma=90.430(3)^{\circ}$
$V=488.63(4) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.531 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 2102 \\
& \quad \text { reflections } \\
& \theta=2.9-27.5^{\circ} \\
& \mu=0.14 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.35 \times 0.35 \times 0.15 \mathrm{~mm}
\end{aligned}
$$

## Data collection

Nonius KappaCCD diffractometer $\varphi$ scans, and $\omega$ scans with $\kappa$ offsets Absorption correction: multi-scan
(DENZO-SMN; Otwinowski \&
Minor, 1997)
$T_{\text {min }}=0.953, T_{\text {max }}=0.980$
6667 measured reflections
2237 independent reflections

## Refinement

Refinement on $F^{2}$
1691 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.049$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=-10 \rightarrow 10$
Intensity decay: negligible

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0484 P)^{2}\right. \\
& +0.0973 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.29 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.24 \mathrm{e} \mathrm{~A}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.035 \text { (9) }
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry ( $\AA,{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| N1-H1..O.O4 | 0.93 | 1.91 | 2.761 (2) | 151 |
| N1-H1...O6 | 0.93 | 2.29 | 2.947 (2) | 127 |
| $\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 1^{\text {i }}$ | 0.84 | 1.65 | 2.483 (2) | 172 |
| $\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 2$ | 0.84 | 2.15 | 2.643 (2) | 117 |
| $\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O} 7^{\text {ii }}$ | 0.84 | 2.17 | 2.836 (2) | 137 |
| O6-H6 $\cdots$ O $1^{\text {iii }}$ | 0.84 | 1.95 | 2.778 (2) | 168 |
| O7-H71 ${ }^{\text {O }}$ O5 | 0.86 (2) | 1.99 (2) | 2.826 (2) | 167 (2) |
| $\mathrm{O} 7-\mathrm{H} 72 \cdots \mathrm{O} 2^{\text {i }}$ | 0.89 (3) | 1.92 (3) | 2.805 (2) | 171 (2) |

Symmetry codes: (i) $1+x, y, z$; (ii) $1-x, 1-y, 2-z$; (iii) $-x,-y, 1-z$.
Compound (I) crystallized in the triclinic system; space group $P \overline{1}$ was assumed and confirmed by the analysis. The coordinates of the H atoms of the O 7 water molecule were determined from a difference map and were then allowed to refine isotropically subject to a DFIX restraint. All other H atoms were treated as riding, with distances $\mathrm{C}-$ $\mathrm{H}=0.98-1.00 \AA, \mathrm{~N}-\mathrm{H}=0.93 \AA$ and $\mathrm{O}-\mathrm{H}=0.84 \AA$.

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2001); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

## organic compounds

X-ray data were collected at the University of Toronto using a Nonius KappaCCD diffractometer purchased with funds from NSERC Canada.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1517). Services for accessing these data are described at the back of the journal.

## References

Burchell, C. J., Ferguson, G., Lough, A. J., Gregson, R. M. \& Glidewell, C. (2001). Acta Cryst. B57, 329-338.

Burchell, C. J., Glidewell, C., Lough, A. J. \& Ferguson, G. (2001). Acta Cryst. B57, 201-212.
Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
Glidewell, C., Ferguson, G., Gregson, R. M. \& Lough, A. J. (2000). Acta Cryst. C56, 855-858.
Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter \& R. M. Sweet, pp. 307-326. London: Academic Press.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2001). PLATON. August 2001 Version. University of Utrecht, The Netherlands.


[^0]:    $\dagger$ Permanent address: Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1.

